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Over the past decade there have been significant advancements in the methods
used for detecting and characterizing Mycoplasma pneumoniae, a common cause of
respiratory illness and community-acquired pneumonia worldwide. The repertoire of
available molecular diagnostics has greatly expanded from nucleic acid amplification
techniques (NAATs) that encompass a variety of chemistries used for detection,
to more sophisticated characterizing methods such as multi-locus variable-number
tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted
laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS), single
nucleotide polymorphism typing, and numerous macrolide susceptibility profiling
methods, among others. These many molecular-based approaches have been
developed and employed to continually increase the level of discrimination and
characterization in order to better understand the epidemiology and biology of
M. pneumoniae. This review will summarize recent molecular techniques and
procedures and lend perspective to how each has enhanced the current understanding
of this organism and will emphasize how Next Generation Sequencing may serve as a
resource for researchers to gain a more comprehensive understanding of the genomic
complexities of this insidious pathogen.

Keywords: Mycoplasma pneumoniae, molecular diagnostics, molecular epidemiology, molecular characteristics,
whole genome sequencing

INTRODUCTION

Mycoplasma pneumoniae is a common cause of respiratory infections in all age groups worldwide
(Waites and Talkington, 2004; Atkinson et al., 2008; Waites and Atkinson, 2009; Winchell,
2013). M. pneumoniae infections vary dramatically in clinical presentation, ranging from mild,
self-limiting upper respiratory symptoms to radiographically confirmed pneumonia requiring
hospitalization (Waites and Talkington, 2004; Atkinson et al., 2008). In some cases, infection may
result in severe clinical syndromes involving other organ systems (Waites and Talkington, 2004;
Atkinson et al., 2008; Narita, 2010; Olson et al., 2015; Magun et al., 2016). Localized outbreaks
of M. pneumoniae have been reported frequently, especially in closed settings, and transmission
between household contacts is known to occur (Foy et al., 1966; File et al., 1998; Walter et al.,
2008; Waites and Atkinson, 2009; Winchell, 2013). The long incubation period of up to 3 weeks
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and prolonged shedding after infection allows outbreaks to often
go unnoticed and extend for long periods of time (Foy et al.,
1966; File et al., 1998; Hammerschlag, 2001; Atkinson et al.,
2008; Nilsson et al., 2008). Larger community-wide outbreaks
are frequently not identified or are recognized late. This
underrecognition is due, in part, to a lack of pathogen-specific
testing for mild respiratory illness in the primary care setting.
However, increased incidence of M. pneumoniae infections in
Europe, Asia, and the United States has been reported since 2010
(Lenglet et al., 2012; Diaz et al., 2015b; Kim et al., 2015). Such
epidemic seasons ofM. pneumoniae have been reported to occur
every 4–7 years (Foy et al., 1979; Waites and Talkington, 2004;
Atkinson et al., 2008; Winchell, 2013).

Despite the diversity and complexity of the clinical and
epidemiological characteristics of M. pneumoniae infections, the
bacterium itself is one of the smallest and simplest known
organisms capable of living outside of a host cell. The genome
of M. pneumoniae is approximately 800 kb in size, maintaining
a set of approximately 700 annotated protein-coding genes
(Guell et al., 2009; Lluch-Senar et al., 2015; Xiao et al.,
2015) plus additional non-coding RNA genes (Dandekar et al.,
2000; Xiao et al., 2015). The reduced genome is deceivingly
complex as it contains tracts of tandemly repeated sequences at
numerous loci (Degrange et al., 2009) and has been proposed
to utilize sophisticated transcriptional regulatory mechanisms
and antigenic variation to control gene expression (Guell et al.,
2009; Spuesens et al., 2009, 2011; Citti et al., 2010). Variation
of surface-exposed immunogenic epitopes, including the P1
adhesion molecule, have been reported (Spuesens et al., 2009,
2011) and may be a driving force for the cyclic occurrence of
epidemic seasons of M. pneumoniae infections (Dumke et al.,
2004).

Methods for identification ofM. pneumoniae infection include
culture, serological analysis, or molecular detection of pathogen-
specific antigen(s) or nucleic acid. Culture is a definitive method
for diagnosis of M. pneumoniae, and ongoing maintenance of
a collection of clinical isolates is critical for monitoring trends
in the epidemiology of this organism. However, culture is slow
and requires specialized media and trained personnel, and, most
importantly, recovery of isolates is highly variable and may be
low, even in specialized laboratories (Ieven et al., 1996; Dorigo-
Zetsma et al., 1999; Morozumi et al., 2004; Thurman et al.,
2008). Serological analysis has proven problematic for the specific
identification ofM. pneumoniae infection due to poor diagnostic
sensitivity and specificity and the requirement for paired acute
and convalescent sera, and it does not allow for characterization
of the M. pneumoniae strain causing the infection (Beersma
et al., 2005; Nir-Paz et al., 2006; Thurman et al., 2008). Neither
culture nor serology is practical for rapid detection of acute
infection, limiting the utility of these methods to retrospective
investigations.

Molecular methods for nucleic acid or antigen detection
have emerged as the primary techniques for identification of
M. pneumoniae in surveillance programs. However, adoption of
these methods has lagged in the clinical setting in the United
States with many physicians continuing to rely on serological
tests or opting for no pathogen-specific testing in concordance

with the guidelines from the Infectious Diseases Society of
America (IDSA) for the treatment of community-acquired
pneumonia (CAP; Mandell et al., 2007; Bradley et al., 2011).
Beyond the methods for detection of M. pneumoniae in clinical
specimens, numerous molecular methods have been developed
in recent years that exploit the limited genomic diversity of
M. pneumoniae isolates in order to characterize isolates for
epidemiological purposes, although no clear correlation of strain
type with clinical presentation, disease severity, or patient
outcome has been identified to date. The emergence of macrolide
resistance in this species has also spurred the development
of molecular methods for determining susceptibility to this
frontline antibiotic to improve appropriate prescribing. More
recently, whole genome sequencing (WGS) has emerged as a
more accessible and thorough approach for investigating the
biological and epidemiological characteristics ofM. pneumoniae.
This review summarizes the various molecular methods for both
detection and characterization ofM. pneumoniae with a focus on
WGS and the potential of this approach to transform the field in
coming years.

DETECTION OF M. pneumoniae USING
NUCLEIC ACID AMPLIFICATION
TECHNIQUES (NAATs)

Respiratory infections, including CAP, may be caused by a wide
variety of pathogenic microorganisms that are indistinguishable
by clinical evaluation alone. Nucleic acid amplification
techniques (NAATs) have been increasingly recognized and
implemented as the preferred method for identification of
respiratory bacteria and viruses, including M. pneumoniae, in
clinical specimens as a result of the high level of sensitivity
and specificity and rapid turnaround time afforded by these
methods. NAATs for M. pneumoniae were reviewed by Loens
et al. (2003b), at which time only two of the 34 assays described
for detection of M. pneumoniae were real-time PCR methods.
Since that time, numerous real-time PCR assays encompassing
a variety of chemistries have been developed and have largely
replaced conventional PCR for research and diagnostic purposes.
The predominant real-time PCR chemistries utilized for
M. pneumoniae detection are intercalating dyes and 5′ hydrolysis
(TaqMan R©) assays. The most common genetic target regions
within the M. pneumoniae genome are 16S rRNA, P1 gene, or
the ATPase operon (Loens et al., 2003b). More recently, the gene
encoding the community-acquired respiratory distress syndrome
(CARDS) toxin, first described in Kannan et al. (2005), has
also proven to be a useful target sequence for M. pneumoniae
detection by real-time PCR (Winchell et al., 2008; Thurman et al.,
2011).

A subsequent review of the status of M. pneumoniae
diagnostics in 2010 detailed the rapid rise in laboratory-
developedNAATs, specifically real-time PCR,multiplex or multi-
pathogen PCR, and isothermal amplification methods, and
emphasized the need to properly evaluate new assays prior to
implementation (Loens et al., 2010). A lack of qualified standards
used to evaluate new assays makes an accurate comparison
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of performance characteristics impossible. The external quality
assessment (EQA) panel for M. pneumoniae available from
Quality Control for Molecular Diagnostics (Glasgow, Scotland,
United Kingdom) provides a useful metric for assessment of
new laboratory-developed NAATs. Implementation of controlled
standards for assessment of new methods will be beneficial for
advancingMycoplasma diagnostics. In addition to the numerous
in-house laboratory-developed tests, several real-time PCR assays
are now commercially available. A few recent studies have
been conducted to evaluate the performance of these products,
which overall were found to have comparable sensitivity and
specificity albeit at a higher per specimen cost compared to
LDTs (Dumke and Jacobs, 2009, 2014; Touati et al., 2009). Still,
testing practices for detecting M. pneumoniae in the primary
care setting are unlikely to change without modifications to
guidelines for pathogen-specific testing established by relevant
medical professional organizations, such as the IDSA. Periods of
high incidence of M. pneumoniae infections, such as the recent
worldwide epidemic period described in 2010–2012 (Lenglet
et al., 2012; Diaz et al., 2015b; Kim et al., 2015), serve to bring
M. pneumoniae to the attention of primary care providers and key
decision-makers in the creation of guidelines for the treatment of
CAP (Jacobs, 2012).

Multiplex and Multi-Pathogen NAATs
Clinical presentation of M. pneumoniae infection can vary
significantly and may be indistinguishable from respiratory
infections caused by other bacterial and viral agents. Like
M. pneumoniae, the Chlamydophila species are fastidious and
extremely slow and difficult to culture. For these reasons, assays
for detection of other atypical causes of bacterial pneumonia,
including Chlamydophila pneumoniae or C. psittaci, as well as
Legionella species, are often combined with M. pneumoniae into
multiplex PCR formats (Miyashita et al., 2004; McDonough et al.,
2005; Thurman et al., 2011). Diaz and Winchell (2012) described
a rapid real-time PCR assay for detection of M. pneumoniae
and C. pneumoniae that can be performed directly from clinical
specimens without a nucleic acid extraction step about six times
faster compared to standard real-time PCR methods. Although
the sensitivity of the direct PCR was lower compared to extracted
nucleic acid, it is possible that improved sensitivity could be
achieved through further optimization of the method along with
immediate testing of an upper respiratory swab at the time of
collection, thus allowing for performance of this assay at the
point-of-care. The requirement for a thermocycler instrument
and procedural separation to avoid laboratory contamination and
potential false positive results remain the most significant barriers
to implementation of even the simplest and fastest real-time PCR
methods in the clinical setting.

Mycoplasma pneumoniae has also been included in multi-
pathogen panels for detection of a diverse array of bacterial,
viral, and fungal agents capable of causing pneumonia, such as
the BioFire FilmArray respiratory panel (BioFire Diagnostics,
Salt Lake City, UT, USA), which is cleared for diagnostic use
by the U.S. Food and Drug Administration (FDA; Poritz et al.,
2011), and the Fast-track Diagnostics Respiratory Pathogens
multiplex real-time RT-PCR assay kits (Fast-track Diagnostics,

Luxembourg, Belgium) and Seegene Allplex Respiratory Full
Panel Assay (Seegene, Inc., Seoul, Korea), which are CE
certified in Europe. The U.S. Centers for Disease Control
and Prevention (CDC) includes M. pneumoniae in a multi-
pathogen testing panel on the TaqMan Array Card (TAC;
ThermoFisher Scientific, CA, USA) used for investigating
unexplained respiratory disease outbreaks in the United States
(Kodani et al., 2011; Cieslak et al., 2012). Since 2011, TAC
has been used by our laboratory for surveillance testing
at the U.S. CDC to identify at least seven outbreaks of
M. pneumoniae and was used to implicate M. pneumoniae as
the cause of a cluster of severe CAP cases (Rhea et al., 2014;
Waller et al., 2014; Diaz et al., 2015b; Hastings et al., 2015).
Implementation of multi-pathogen detection methods could
profoundly improve determination of incidence of infections
caused by M. pneumoniae and impact appropriate antibiotic
prescribing during CAP.

It is important to note that multiplex detection approaches
for respiratory infections, including CAP, introduce additional
complexity into the determination of etiology since the mere
presence of an organism does not indicate a contribution
to disease. Many bacterial and viral agents with pathogenic
potential may also be present in the upper respiratory tract
in a carriage state or for a prolonged period of shedding
after resolution of infection in apparently healthy individuals
(Hammitt et al., 2006; Roberts et al., 2012; Tenenbaum et al.,
2012; Self et al., 2015; Skevaki et al., 2015). Frequent detection
of M. pneumoniae in asymptomatic controls has been reported
among children in the Netherlands (Spuesens et al., 2013),
although this same phenomenon was not observed in a recent
study of CAP etiology among children in the United States
(Jain et al., 2015). Co-detections of other bacterial and viral
pathogens along with M. pneumoniae have been reported
in children (Michelow et al., 2004; Peng et al., 2009; Chiu
et al., 2015). However, the significance of the presence of
additional pathogens in the upper respiratory tract and their
potential interplay with M. pneumoniae is not known. Expanded
testing of respiratory specimens to include a wide collection
of potential pathogens will present a challenge to clinicians for
interpreting the true etiology of disease. Further investigation
is needed to fully understand these interactions, and the
movement of next generation sequencing techniques to clinical
microbiology laboratories may help resolve some of these
questions.

Real-time PCR has become a mainstream diagnostic
procedure in reference laboratories and in some clinical
laboratories. However, substantial barriers to implementation of
this testing method in all clinical laboratories remain. Equipment
for real-time PCR is expensive and requires routine preventative
maintenance to ensure proper function. Laboratories need
to have proper procedural separation of space and training
of laboratory personnel, and all clinical laboratories offering
patient testing in the United States must comply with the
Clinical Laboratory Improvement Amendments (CLIA). Even
when real-time PCR is available as a diagnostic test order, it
is often not requested by physicians since current treatment
guidelines recommend empiric antibiotic therapy without testing

Frontiers in Microbiology | www.frontiersin.org 3 March 2016 | Volume 7 | Article 232

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Diaz and Winchell Molecular Methods for M. pneumoniae

for suspected M. pneumoniae infection (Mandell et al., 2007;
Bradley et al., 2011). As a result, significant effort has recently
been invested in developing simpler NAATs or other detection
approaches that may be utilized at the point-of-care, which will
be summarized in the following sections.

Isothermal Amplification Assays
Isothermal NAATs that do not require thermal cycling and are
amenable to simple visual readout have also been developed
for detection of M. pneumoniae, although these are less
common than real-time PCR methods. Visualization of target
amplification can be achieved using a fluorescent intercalating
dye, chemiluminescent reporter, or even simple optical density
(turbidity) measurement. These assays can be performed using
minimal equipment, requiring only a standard heat block
instead of a thermocycler with optical capability. Isothermal
amplification assays have potential utility as point-of-care testing
methods since they require only basic inexpensive equipment
and minimal operator training, and they are relatively rapid.
The two primary isothermal amplification methods that have
been described for detection of M. pneumoniae are nucleic
acid sequence-based amplification (NASBA) and loop-mediated
isothermal amplification (LAMP).

Nucleic Acid Sequence-Based Amplification (NASBA)
NASBA is a unique method in that it is used for detection
of RNA only through a process in which double stranded
DNA (dsDNA) is generated from RNA through the use of
avian myeloblastosis virus (AMV) reverse transcriptase (AMV-
RT), T7 RNA polymerase, and RNase H while maintaining
a constant reaction temperature of approximately 41◦C. The
dsDNA product is detected through an electrochemiluminescent
readout for conventional assays or, more recently, through
detection of fluorescent signal from a molecular beacon probe.
Similar to PCR, real-time NASBA methods have largely replaced
conventional NASBA assays. Loens et al. (2003a) described a
real-time NASBA assay for detection of M. pneumoniae that
performed comparably to a previously described conventional
NASBA method in terms of analytical and clinical sensitivity
(Loens et al., 2002). This assay was subsequently expanded to a
multiplex format for simultaneous detection of M. pneumoniae,
C. pneumoniae, and Legionella species (Loens et al., 2008).

Despite favorable assay performance characteristics and
advantages of minimal equipment and operator expertise,
NASBA has not been widely implemented in clinical laboratories
to date. It may be that clinical laboratories have not yet updated
test offerings from traditional methods such as serological
analysis; alternatively, it is possible that laboratories prefer to
offer real-time PCR for M. pneumoniae, for which there are
numerous well-validated assays available and the technology
is now widely accepted in diagnostic microbiology compared
to NASBA. Procurement, inventory management, and quality
control of additional specific reagents for NASBA testing for
a single diagnostic test represents a significant investment of
financial and personnel resources for a laboratory. Rather, it
is more likely a NASBA assay could be implemented at the
point-of-care than in clinical or reference laboratories, although

substantial procedural optimization is required to make this
feasible.

Loop-Mediated Isothermal Amplification (LAMP)
LAMPutilizes four to six primers and the strand-displacing DNA
polymerase Bst to generate concatenated amplicons through a
process in which stem-loop structures are introduced flanking
the amplified target sequence. Several LAMP assays have been
reported for the detection of M. pneumoniae (Saito et al., 2005;
Yoshino et al., 2008; Gotoh et al., 2012; Petrone et al., 2015),
and these vary in sensitivity and specificity due to both major
and minor differences between the assays. Variables such as
genetic target, reaction composition, and readout mechanism can
significantly impact assay performance. Due to the complexity of
the amplification events and high number of oligonucleotides,
extensive optimization and validation is required to ensure
reliability of results (Petrone et al., 2015).

The illumigene Mycoplasma DNA amplification assay
(Meridien Bioscience, Inc., Cincinnati, OH, USA) is the only
standalone assay to be cleared by the U.S. FDA for detection
of M. pneumoniae in clinical specimens. This assay, which
targets the intracellular protease gene, displayed 100% sensitivity
and 99% specificity compared to culture (Ratliff et al., 2014).
Still, the requirement for extraction of nucleic acid from the
primary specimen hinders the implementation of this assay for
point-of-care diagnostic use. Petrone et al. (2015) demonstrated
successful detection of M. pneumoniae in clinical specimens
directly without a nucleic acid extraction step using a novel
LAMP assay targeting the CARDS toxin gene. The sensitivity of
this LAMP assay for detection of M. pneumoniae using primary
specimen in place of extracted nucleic acid was 82% compared
to real-time PCR. This assay was optimized to utilize calcein as a
fluorescent readout and can be performed in approximately 1 h
from time of specimen collection to results. Improved sensitivity
would be expected with appropriate modification of specimen
collection procedures and immediate testing of specimens after
collection. Further optimization is needed to formulate a simple
user-friendly reaction setup in order for this method to be
feasible for point-of-care testing.

DETECTION OF M. pneumoniae USING
ANTIGEN DETECTION METHODS

Some detection methods rely on capture and detection of
M. pneumoniae-specific antigen, rather than nucleic acid, present
in clinical specimens. However, antigen detection methods
such as enzyme-linked immunosorbent assay (ELISA) and
hybridization assays have been largely replaced by NAATs due
to the improved sensitivity, specificity, and rapid turnaround
time. A complete review of these methods is outside of the
scope of this review. Nonetheless, there remains some interest
in antigen detection methods for diagnosis of M. pneumoniae,
particularly those that may be amenable to point-of-care use. In
addition to being sensitive and specific, point-of-care diagnostic
tests must be extremely rapid (on the order of minutes), simple
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to perform, require little to no equipment, and be relatively
inexpensive.

Immunochromatographic (Lateral Flow)
Assays
Immunochromatographic assays, also known as lateral flow
assays, represent one of the simplest test formats available
and have been widely implemented for various purposes,
including pathogen detection, at the point-of-care (Posthuma-
Trumpie et al., 2009). Several immunochromatographic assays
for detection ofM. pneumoniae antigen are currently available in
Japan. These tests provide results within 15 min and are easily
interpreted by visual observation of the presence or absence
of a colored line on the test strip. Diagnosis and appropriate
treatment of M. pneumoniae is particularly important in Asia
where the majority of strains are resistant to macrolides (Cao
et al., 2010; Okada et al., 2012), the recommended first-
line antimicrobial therapy, as described in further detail in
section “Macrolide Susceptibility Genotyping ofM. pneumoniae”
below.

Ribotest MycoplasmaTM (Asahi Kasei Corporation,
Tokyo, Japan), is one commercially available rapid
diagnostic lateral flow assay for qualitative detection
of the ribosomal protein L7/L12 of M. pneumoniae in
pharyngeal swab specimens. However, Miyashita et al. (2015)
recently reported a diagnostic sensitivity of only 60% for
RibotestTM compared to real-time PCR, indicating that
this assay does not meet the level of sensitivity required
for detection of M. pneumoniae in clinical specimens.
Recently, Li et al. (2015) reported a novel colloidal gold
immunochromatographic antigen assay for detection of the
P1 gene of M. pneumoniae that was 100% sensitive and
97.4% specific compared to real-time PCR. A highly sensitive
and specific assay with broad market distribution will be
required to achieve widespread implementation in clinical
laboratories.

Nanorod Array Surface-Enhanced
Raman Spectroscopy (NA-SERS)
Another alternative approach that has been proposed for
detection of M. pneumoniae is nanorod array surface-enhanced
Raman spectroscopy (NA-SERS). This method involves
generation of a metallic nanorod array substrate and application
of Raman spectroscopy to detect the unique vibrational
spectral profile of biomolecules in an applied sample. Hennigan
et al. (2010) demonstrated the ability of NA-SERS to detect
M. pneumoniae in mock or true clinical specimens with
sensitivity comparable to real-time PCR methods. Further
evaluation revealed the ability of this method to differentiate
M. pneumoniae from other commensal and pathogenic
Mycoplasma species and to further differentiate strain types
(Henderson et al., 2015), as described further in section
“Nanorod Array Surface Enhanced Raman Spectroscopy”
below. While this method provides a unique and promising
alternative strategy for M. pneumoniae detection, significant
challenges remain for implementation in clinical laboratories,

including required equipment, specimen processing, and
application of statistical analysis to evaluate the spectral profile
identified in clinical specimens. Furthermore, substantial testing
will be necessary to evaluate the feasibility of this approach
for M. pneumoniae detection in the presence of co-detected
pathogens and normal microbial flora of the upper respiratory
tract.

Mass Spectrometry
Matrix-assisted laser desorption ionization-time-of-flight mass
spectrometry (MALDI-TOF MS) is a useful technique for the
rapid identification of pathogenic microorganisms, including
both Gram-positive and Gram-negative bacteria, based on the
unique spectral profile of proteins in bacterial lysate. Pereyre
et al. (2013) generated peptide mass fingerprint product ion
spectra for 10 human and 13 ruminant Mycoplasma species
or subspecies in order to develop a main spectra (MSP)
database for identification of clinically relevant Mycoplasma
species, including M. pneumoniae. The dendrogram based on
29 MSPs from 23 mycoplasmas was consistent with 16S rRNA
phylogeny (Pereyre et al., 2013). This method was sufficiently
sensitive to discriminate closely related Mycoplasma species, but
is limited by the requirement for a culture isolate, which may
take weeks to obtain due to the slow growth of M. pneumoniae.
Furthermore, a large volume of culture (30–100 mL) was
required for extraction of proteins for successful generation of
MSPs; the time required and means to generate such a high
volume culture are not practical in most clinical laboratories.
Nonetheless, MALDI-TOF MS has been shown to be useful for
the detection of anaerobic, fastidious, and slow-growing bacterial
isolates from clinical specimens (Biswas and Rolain, 2013).
In order for MALDI-TOF MS to meet the rapid turnaround
time possible with NAATs, technical optimization is needed to
achieve detection of M. pneumoniae directly from respiratory
specimens.

CHARACTERIZATION OF M. pneumoniae

Mycoplasma pneumoniae is a highly genetically conserved
species; genomic comparisons have revealed >99% sequence
similarity between isolates (Lluch-Senar et al., 2015; Xiao et al.,
2015). Still, several methods have been developed to characterize
M. pneumoniae strains based on various genetic elements and
allowing for classification of M. pneumoniae for epidemiological
purposes. In the absence of substantial sequence diversity, strain
differentiation efforts have focused largely on variability in
the relatively high number of repetitive elements within the
genome. Approximately 8% of the M. pneumoniae genome is
comprised of repetitive sequences, some of which are present
in multiple copies throughout the genome (Himmelreich,
1996). Variation in the nucleotide sequence or the number
of tandem repeats at these genetic loci underlie some
of the most commonly used methods for M. pneumoniae
typing.

Recent advances in WGS and access to an increasing
collection of publicly available completeM. pneumoniae genomes
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(discussed in depth in section “Whole Genome Sequencing”
below) have aided in identifying areas within the genome
that can be targeted to achieve greater discriminatory power.
With the expansion of WGS to the clinical sector, there is
little doubt that genomic characterization of M. pneumoniae
will become more reliable and robust, and WGS analysis
may be routinely used during outbreak investigations or as
part of surveillance programs. In the following sections, we
review the current approaches for typing of M. pneumoniae
and describe the methods for each characterization scheme,
culminating in a review of recent WGS advancements and a
discussion of the future application of WGS to M. pneumoniae
diagnostics.

P1 Typing
Typing based on sequence variation within repetitive elements
located in the gene encoding the P1 adhesion molecule was
first described in 1990 and has the longest history of use for
distinguishing the two main subtypes of M. pneumoniae, types
1 and 2 (Dallo et al., 1990; Su et al., 1990b). Two of the repetitive
elements found in the M. pneumoniae genome, RepMP2/3 and
RepMP4, are located within the gene encoding the 170 kDa
adhesin protein P1, and sequence variation between types 1 and
2 strains occurs largely within these repetitive regions (Su et al.,
1990a). In addition, 7 copies of RepMP4 and nine copies of
RepMP2/3 have been identified at various loci in the genome
outside of the transcriptionally active operon that includes the
P1 gene (Ruland et al., 1990; Himmelreich, 1996). Evidence of
recombination of these sequence copies into the transcribed P1
gene has been reported, yet the exact mechanisms underlying
these recombination events and the frequency of such events
are not known (Spuesens et al., 2009; Musatovova et al., 2012).
Notably, Spuesens et al. (2009) found that isolates contain either
types 1 or 2-specific RepMP sequences within their genome, but
not both, suggesting an early divergence in the phylogeny of
M. pneumoniae. Variants of each type have also been described
(Schwartz et al., 2009a; Spuesens et al., 2009; Zhao et al., 2011;
Kenri et al., 2012).

The P1 adhesin is a major virulence determinant of
M. pneumoniae, facilitating adherence of the bacteria to
respiratory epithelial cells during infection (Baseman et al.,
1996; Baseman and Tully, 1997; Razin et al., 1998; Waites
and Talkington, 2004; Atkinson et al., 2008). P1 is a primary
immunogenic component of M. pneumoniae, and thus sequence
variation within the P1 gene can be expected to result in alteration
in the surface-exposed protein thereby potentially affecting the
infectious process. In fact, the alternating predominance of
types 1 or 2 strains circulating in a population during epidemic
seasons has been documented previously (Lind et al., 1997;
Kenri et al., 2008; Kogoj et al., 2015), and the cyclic pattern
was potentially attributed to the development of temporary
immunity to one type, thus allowing reemergence of the other
type (Dumke et al., 2004). However, recently co-circulation of
both P1 types and multiple variants have been reported during
the same epidemic period and even during discrete outbreaks
(Waller et al., 2014; Diaz et al., 2015b; Jacobs et al., 2015). These

findings suggest that P1 typing alone is likely not adequate to
classifyM. pneumoniae.

Furthermore, the lack of any association of strain type
with disease characteristics, particularly severity of illness or
patient outcomes, calls into question the utility of P1 typing
and other typing schemes included in this review. However,
there remains continued interest and benefit in monitoring
strain types using existing methods in order to understand
the epidemiological shifts in circulating M. pneumoniae strains
over time and across geographic locations. Newer methods have
been developed with superior discriminatory power compared
to P1 typing alone, yet, even using WGS analysis, the most
comprehensive characterization method available, strains are
still classified into 2 main clades corresponding to P1 types,
although further separation within these clades has been
observed using WGS (Lluch-Senar et al., 2015). Although
P1 typing is likely to be augmented or replaced by newer
methods to better characterize M. pneumoniae, it will be
used for some time still for epidemiological investigations and
surveillance programs. Here we review the primary methods
used for typing M. pneumoniae based on the P1 adhesin
(Table 1).

Restriction Fragment Length Polymorphism (RFLP)
and Sequencing Analysis
One widely used approach to typing M. pneumoniae based on
P1 is PCR-Restriction Fragment Length Polymorphism (PCR-
RFLP) analysis (Sasaki et al., 1996; Cousin-Allery et al., 2000;
Kenri et al., 2008; Musatovova et al., 2008). Results are compared
to prototypical type strains of each type, M129 (type 1) and
FH (type 2). Using this method, M. pneumoniae isolates can
be identified as type 1 or 2 or a number of unique variants.
Dumke et al. (2006) utilized amplification and sequencing to
distinguish P1 types directly from clinical specimens. Spuesens
et al. (2010) reported the use of pyrosequencing for molecular
typing of M. pneumoniae into the two main subtypes based
on sequence variation in the MPN141 (P1) and MPN528a
genes. Both of these methods require post-PCR processing,
which increase time to results and potential for contamination
of laboratory space with PCR amplicon, which may lead to
false positive results. This risk can be mitigated by meticulous
separation of space and equipment for post-PCR processing
steps.

High Resolution Melt (HRM) Analysis
Schwartz et al. (2009a,b) reported a novel PCR assay with High
Resolution Melt (HRM) analysis to differentiate types 1 and
2 and to identify variants. This approach uses amplification
of a 1900 bp sequence followed by melting curve analysis
in a one-step reaction to clearly distinguish types 1 and
2 isolates based on alteration in the melting temperature
created by multiple single nucleotide polymorphisms (SNPs)
located within the amplicon. Variants of type 1 or 2 are
also identifiable by virtue of further sequence variation in the
amplified target region (Schwartz et al., 2009a). The major
advantages of this method are a more rapid turnaround
time and no requirement for post-PCR reaction manipulation,
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TABLE 1 | Molecular methods for characterization of Mycoplasma pneumoniae.

Characterization scheme Method(s) Reference(s)

P1 gene typing PCR-RFLP Cousin-Allery et al., 2000

PCR-high-resolution melt (HRM) Schwartz et al., 2009b

NASBA Ovyn et al., 1996

Sequencing Dumke et al., 2006

Pyrosequencing Spuesens et al., 2010

MALDI-TOF MS Xiao et al., 2014

NA-SERS Henderson et al., 2015

Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) MLVA Degrange et al., 2009

MLVA (nested PCR) Dumke and Jacobs, 2011

Multilocus sequence typing (MLST) MLST Brown et al., 2015b

Single nucleotide polymorphism (SNP) genotyping SNaPshot minisequencing assay Touati et al., 2015

Macrolide susceptibility genotyping Sequencing Lucier et al., 1995

Pyrosequencing Spuesens et al., 2010; Chan et al., 2013

PCR-melting curve analysis Wolff et al., 2008; Chan et al., 2013

Whole genome sequencing (isolates) Shotgun sequencing Himmelreich et al., 1996

High-throughput sequencing Lluch-Senar et al., 2015; Xiao et al., 2015

Single-molecule long-read sequencing Lluch-Senar et al., 2013

dramatically reducing the risk of amplicon contamination in the
laboratory.

Nucleic Acid Sequence-Based Amplification (NASBA)
In addition to typing based on analysis of the P1 gene, it has
been reported that there is one SNP in the 16S rRNA gene
that can be used to differentiate types 1 and 2 strains. Ovyn
et al. (1996) developed a conventional NASBA assay which allows
differentiation of the two main P1 types based upon binding of
the electrochemiluminescent-labeled hybridization probe in the
region containing this SNP. This SNP could be easily detected
using targeted resequencing methods or identified in whole
genome sequences in order to simply and reliably identify the
main P1 types.

Multi-Locus Variable Number Tandem
Repeat (VNTR) Analysis (MLVA)
MLVA is a technique applied to many bacterial species for
strain differentiation based upon the number of tandemly
repeated sequences located at designated loci throughout the
genome. Approximately 8% of the M. pneumoniae genome is
comprised of repetitive elements (Himmelreich, 1996), making
this species well-suited for characterization usingMLVA. In 2009,
Degrange et al. (2009) developed a five-loci MLVA scheme for
differentiation of M. pneumoniae strains through identification
and selection of VNTR regions in M. pneumoniae that were
polymorphic between isolates, yet stable upon passage in broth
culture. Using this five-loci typing scheme, 26 MLVA types were
identified, and these were assigned alphabetical identifiers, A
through Z. Shortly after the development of this method, a
slightly modified protocol was applied which enabled testing
of nucleic acid extracted from primary clinical specimens,
thus eliminating the need for a culture isolate (Dumke and
Jacobs, 2011; Benitez et al., 2012). Since the introduction
of this method for M. pneumoniae characterization, it has

been widely implemented for investigating outbreaks as well
as characterizing historical strain collections. However, in the
course of implementing this method, the first locus, Mpn1, was
shown to be unstable, rendering it impractical for classification of
M. pneumoniae (Benitez et al., 2012; Sun et al., 2013). Multiple
research groups proposed the exclusion of this marker and
modification to a four-loci MLVA scheme (Sun et al., 2013;
Waller et al., 2014). The removal of the Mpn1 locus from the
typing scheme reduced the discriminatory power of this method,
allowing classification of M. pneumoniae strains into fewer
unique types. Nonetheless, the modified approach is generally
considered to be more robust and has been accepted as the new
international standard forM. pneumoniaeMLVA typing (Chalker
et al., 2015).

Adaptation to the four-loci MLVA typing scheme revealed a
few predominantMLVA types circulating concurrently in the past
5–7 years, a period during which increasedM. pneumoniae cases
were documented on multiple continents, including Europe,
Asia, andNorth America (Chalker et al., 2011, 2012; Blystad et al.,
2012; Eibach et al., 2012; Lenglet et al., 2012; Nir-Paz et al., 2012;
Polkowska et al., 2012; Eshaghi et al., 2013; Sun et al., 2013; Diaz
et al., 2015b). The three most common types identified during
this period were 4572, 3562, and 3662 (Sun et al., 2013; Diaz
et al., 2015b). Adaptation to the four-loci MLVA typing scheme
in our laboratory revealed a correlation between MLVA type and
P1 type; isolates identified as MLVA type 4572 were always P1
type 1 while MLVA type 3562 or 3662 were always P1 type 2
(Waller et al., 2014; Diaz et al., 2015b). While this correlation
has held up for all isolates and specimens tested to date in our
laboratory, other investigators have reported a small number of
P1 type 1 strains that are not MLVA type 4572 and P1 type 2
strains that are notMLVA type 3X62, suggesting that there are few
exceptions to this correlation (Degrange et al., 2009; Dumke and
Jacobs, 2011; Sun et al., 2013). Nonetheless, the biological reasons
underlying the observed correlation are not well understood,
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particularly since these four VNTR regions are located either
within an intergenic region (Mpn13) or in an open reading
frame (ORF) encoding a hypothetical protein [Mpn14 (MPN
501), Mpn15 (MP 524), and Mpn16 (MPN 613)] (Degrange
et al., 2009). However, recent whole genome SNP and indel
analysis of numerous M. pneumoniae isolates also substantiates
the separation of these two main groups (Lluch-Senar et al., 2015;
Xiao et al., 2015), supporting the early phylogenetic divergence of
two main lineages ofM. pneumoniae (Musatovova et al., 2012).

While MLVA has higher discriminatory power compared to
P1 typing (Pereyre et al., 2012), researchers have continued to
pursue the development of typing methods with even higher
discriminatory power or that are clinically or epidemiologically
informative. Some recent reports have suggested a correlation
of MLVA type 4572 with macrolide resistance and disease
severity (Qu et al., 2013; Ho et al., 2015). Other studies
have reported an association between macrolide resistance and
disease severity or clinical course (Cardinale et al., 2013; Zhou
et al., 2014); thus, additional studies are needed to determine
strain attributes that may impact the course of M. pneumoniae
infection. Further investigation is necessary to verify any
potential associations since these findings may influence testing
practices for M. pneumoniae in clinical laboratories and could
ultimately improve patient management.

Multi-Locus Sequence Typing (MLST)
MLST is a widely used tool for strain differentiation in many
genera of bacteria. Initial attempts to categorize M. pneumoniae
isolates into MLST types using housekeeping and structural
genes were generally unsuccessful due to limited sequence
variation within these regions (Dumke et al., 2003). Using a
growing set of whole genome sequence data, a new MLST
method was recently reported by Brown et al. (2015b) that
exploited sequence polymorphisms of eight housekeeping genes
(ppa, pgm, gyrB, gmk, glyA, atpA, arcC, and adk). SNPs were
identified in the type strains of M. pneumoniae (M129 and
FH) and 35 clinical isolates. Further sequencing and PCR
experimentation with an additional 20 isolates allowed for
12 distinct sequence types (STs) to be established. This is
substantially more discriminating than the previous MLST
scheme that only found slight sequence variation in the three
housekeeping genes selected for discrimination (Dumke et al.,
2003). The authors also confirmed the relative stability of
these MLST loci after performing 10 sequential subculture
passages of isolates, finding no change in the SNP patterns.
Like other typing methods, no link between the reported
STs and isolation year, patient age, or geographic origin
of the clinical specimen, was found. However, two distinct
genetic clusters were observed that correlate with MLVA
type 4572 and 3X62. The two clonal complexes resulting
from this more comprehensive MLST study underscore the
significant differences between these two genetically distinct
lineages.

Although this typing scheme is more discriminating than
the commonly used MLVA and P1 typing methods, it still
requires PCR and sequencing of the isolate to generate the ST.
Greater utility of this procedure will surely be realized when

this methodology is applicable for testing directly on clinical
specimens. Nonetheless, this method is of value for typing isolates
for epidemiological investigations and can greatly enhance the
understanding of strain circulation, transmission dynamics, and
relative persistence in a population or geographic location. The
creators of this scheme also established a web-based database
for M. pneumoniae MLST data that can also be linked to an
isolate database that contains epidemiological information (Jolley
and Maiden, 2010). New data can be submitted to the database
in order to track the number of unique profiles identified to
date.

Single Nucleotide Polymorphism (SNP)
Genotyping
Another molecular typing approach used to more clearly define
and genotype M. pneumoniae isolates and positive clinical
specimens is based upon SNPs that were identified after
performing WGS on eight strains. Touati et al. (2015) showed
that nine SNP types can be determined from eight reliable
SNPs identified within housekeeping, predicted lipoprotein, and
P1 adhesin genes using a “SNaPshot” mini-sequencing assay.
This approach uses a single-base extension (SBE) method which
allows an unlabeled mini sequencing primer to anneal one base
upstream of the specified SNP using a fluorescently labeled
ddNTP that can be easily detected after the separation and
extension of the product has occurred. This technology was
used to characterize 140 M. pneumoniae strains previously
typed using five-loci MLVA and P1 methods. These previously
used typing schemes had mixed correlation when compared
to the SNaPshot mini-sequencing procedure; SNP genotyping
correlated poorly with 5-loci MLVA types but strongly with
P1 types (Touati et al., 2015). The poor correlation with
the 5-loci MLVA type may be a result of the instability of
the first locus, Mpn1, which introduces artefactual differences
between strains. The SNP typing method had a higher
Hunter and Gaston diversity index compared to other typing
methods, including 4-loci MLVA. Other major advantages of
this technology are that it can be highly multiplexed, has
increased sensitivity, and can be used directly on clinical
specimens (Sobrino et al., 2005; Touati et al., 2015). Identification
of SNPs in nucleic acid from clinical specimens without
performing any sequencing procedure affords a significant
savings in time and cost while also mitigating any potential
contamination within laboratories since minimal manipulation
of the specimen is required. Furthermore, this method allows
for discrimination of strains without the need to generate and
handle WGS data, which requires substantial computing power
and bioinformatics expertise. This SNP typing method may
prove to be useful for epidemiological analysis, but is likely to
only be performed at highly specialized academic and reference
laboratories.

MALDI-TOF MS + ClinProTools
Initial evaluation of MALDI-TOF MS method for identification
of M. pneumoniae (described in section “Identification of
M. pneumoniae Using Mass Spectrometry” above) also revealed
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that strains clustered by P1 type based upon the MSP (Pereyre
et al., 2013). Xiao et al. (2014) utilized an analysis software
tool, ClinProTools (Bruker Daltonics, Bremen, Germany) to
differentiate P1 types using a genetic algorithm based upon
seven biomarker peaks identified using MALDI-TOF MS. These
investigators demonstrated that the genetic algorithm model was
able to correctly identify the P1 type of 43M. pneumoniae isolates
based upon the peptide mass fingerprints. Thus, P1 typing can
be successfully performed either by analysis of the nucleic acid
or protein composition of an isolate. To date, nucleic acid-based
approaches have been preferred methods by most laboratories,
but MALDI-TOFMS is rapidly gaining acceptance in the clinical
microbiology field and thus represents a potential future avenue
forM. pneumoniae diagnostics.

Nanorod Array Surface Enhanced Raman
Spectroscopy (NA-SERS)
The NA-SERS method described in section “Nanorod Array
Surface-Enhanced Raman Spectroscopy” was also capable
of differentiating M. pneumoniae strains into three classes
corresponding to P1 types 1, 2 and 2 variant (2V) (Henderson
et al., 2015). Partial least squares-discriminatory analysis (PLS-
DA) modeling was applied to differentiate M. pneumoniae-
specific spectra from background and the spectra of other
pathogenic or commensal mycoplasmas. Subsequently, three
unique PLS-DA models were built to distinguish strains based
on P1 type. Although this method does not provide a higher
discriminatory power compared to other typing methods, it does
allow for simultaneous detection and typing of M. pneumoniae
in a rapid and reliable manner. However, unless a clinically
relevant association of strain type with disease is identified,
performance of typing assays in a clinical laboratory is of
little value for patient care, and typing methods are likely to
remain an offering only by specialized reference laboratories.
In addition, further validation is needed to assess performance
of this method for detection and typing of M. pneumoniae
strains in complex clinical specimens. Nonetheless, NA-SERS
represents a unique alternative approach to the identification of
M. pneumoniae and other respiratory pathogens, particularly if
this method can be modified for multi-pathogen detection in
clinical specimens.

MACROLIDE SUSCEPTIBILITY
GENOTYPING OF M. pneumoniae

Macrolides, primarily azithromycin, are the recommended first-
line antibiotic for treatment of M. pneumoniae (Waites and
Talkington, 2004; Mandell et al., 2007; Atkinson et al., 2008;
Bradley et al., 2011; Waites, 2011). Since the first report in 2001
of macrolide-resistant M. pneumoniae (Okazaki et al., 2001),
the prevalence of this trait has emerged worldwide, reaching
dangerously high levels upward of 90% in Asia (Liu et al., 2009;
Xin et al., 2009; Cao et al., 2010; Okada et al., 2012). In the
United States and Europe, macrolide resistance has persisted over
the past decade, albeit at relatively low levels (∼10%; Steffens
et al., 2012; Diaz et al., 2015a,b; Zheng et al., 2015). However,

diagnostic testing for detection ofM. pneumoniae is not routinely
performed in the United States, so specimens are not often
available for susceptibility testing. Estimates of the prevalence of
macrolide resistance in the United States are generally obtained
from outbreak investigations and limited surveillance studies.
Three recent studies have reported macrolide resistance rates
ranging from 3.5 to 13.2% among M. pneumoniae-positive
clinical specimens in the United States (Diaz et al., 2015a,b;
Zheng et al., 2015). The highest rate reported in the United States,
27%, occurred during a discrete outbreak in Rhode Island in
2009, although this was based on only 11 specimens (Wolff et al.,
2008). Resistance rates from large-scale multi-site surveillance
studies likely represent a more accurate estimate, but it remains
possible that macrolide resistance ismore likely to develop during
prolonged outbreaks.

Some studies suggest that resistance develops in an individual
patient in response to macrolide treatment (Dumke et al., 2014),
although the frequency with which this occurs is not well
defined and may be low (Nilsson et al., 2014). Development
and expansion of a resistant subpopulation within an individual
patient in response tomacrolide therapy rather than transmission
of a resistant isolate within a population is supported by
investigations of outbreaks and transmission among household
contacts in which only a few sporadic clinical isolates were found
to be resistant (Diaz et al., 2015b). Still, the rapid emergence of
macrolide resistant M. pneumoniae in Asia compared with the
relatively low and stable presence of these strains in Europe and
North America underscore that this trait must be studied at the
population level rather than only within an individual patient.
Further investigation including longitudinal studies are needed in
order to understand how the resistance trait emerges and expands
within a population.

The mechanism of resistance to macrolides inM. pneumoniae
is well understood; a single SNP at one of several key residues
within or adjacent to the binding site in the peptidyl transferase
loop of the 23S rRNA large subunit prevents the macrolide
from binding and inhibiting protein synthesis (Bebear et al.,
2011). Mutations at positions 2063 and 2064 in M. pneumoniae
result in high level resistance to macrolide antibiotics, whereas
a mutation at position 2067 or 2617 is associated with a lower
level of resistance (Morozumi et al., 2010). Mutations that occur
in the 23S rRNA gene are dominant as there is only a single
rRNA operon in the M. pneumoniae genome (Gobel et al.,
1984). Since only a single base change confers resistance, it is
biologically plausible that this event may happen frequently,
especially since M. pneumoniae is known to have limited DNA
repair mechanisms in the reduced genome (Carvalho et al., 2005).
Furthermore, the relatively long biological half-life of macrolide
antibiotics, particularly azithromycin, may also contribute to the
development of resistance in vivo (Stevens et al., 1997; Kastner
and Guggenbichler, 2001).

Molecular methods have been developed using a variety
of techniques to rapidly determine susceptibility of a
M. pneumoniae isolate or primary clinical specimen extract.
While these methods vary in complexity, all require a substantial
investment of equipment, laboratory space, and highly trained
staff for performance and, therefore, are generally restricted
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to reference and research laboratories. However, some studies
indicate that infection with macrolide-resistant M. pneumoniae
may be of longer duration or severity (Cardinale et al., 2013; Zhou
et al., 2014), supporting the value of macrolide susceptibility
testing for informing patient management, particularly in severe
cases.

Sanger Sequencing
Perhaps the most straightforward approach to identifying
sequence polymorphisms in the 23S rRNA gene is to amplify
the target region by conventional PCR and perform nucleotide
sequencing analysis. Lucier et al. (1995) performed broth dilution
tests, ribosomal binding studies, and DNA sequencing analysis
to identify SNPs within 23S rRNA gene of M. pneumoniae that
confer resistance to macrolide antibiotics. Subsequent studies
have used Sanger sequencing as a comparative method to validate
novel molecular assays for detection of known polymorphisms
(Matsuoka et al., 2004; Wolff et al., 2008; Chan et al., 2013).

Recently, Dumke et al. (2014) reported the emergence of a
macrolide-resistant subpopulation of M. pneumoniae within an
individual patient by collection and testing of multiple specimens
during the course of the infection. In this report, the investigators
cloned PCR amplicons of 23S rRNA into a plasmid, selected
colonies, and performed sequencing to identify the genotype
present in the specimen. Using this method, only sensitive
M. pneumoniae were detectable in the specimen collected on day
1, but a mixture of both sensitive and resistant sequences were
detected in a specimen collected 18 days later (Dumke et al.,
2014). Interestingly, resistant quasispecies containing either the
A2063G or A2064G mutations (46 and 28%, respectively) were
identified in the same specimen, along with the wildtype genotype
(26%). While this method may be used to identify mixed
populations of macrolide-sensitive and –resistantM. pneumoniae
in a patient specimen, it is prohibitively cumbersome and time-
consuming to be feasible for clinical testing or even as a routine
procedure in specialty reference laboratories.

Pyrosequencing
Pyrosequencing has been used in several studies to evaluate
macrolide susceptibility of M. pneumoniae isolates or primary
specimen extracts (Cao et al., 2010; Spuesens et al., 2010,
2012). For pyrosequencing, PCR is performed using a set
of oligonucleotide primers, one of which has a biotin label.
The resulting biotinylated PCR product is purified using
streptavidin-coated beads, denatured, and subjected to
sequencing. Pyrosequencing is the only method developed
to date that is capable of quantifying the proportions of
macrolide-sensitive and -resistant quasispecies within a clinical
specimen (Chan et al., 2013) and is a more feasible approach
for determination of mixed genotypes in clinical specimens
compared to the cloning and sequencing method described
in section “Sanger Sequencing.” Using pyrosequencing, Chan
et al. (2013) determined that nearly 80% of M. pneumoniae-
positive clinical specimens contained some proportion of
macrolide-resistant quasispecies. In specimens that were
previously identified as having the wildtype (macrolide-
susceptible) genotype using another method, up to 44% of

the M. pneumoniae population was found to be macrolide-
resistant. Among specimens identified as macrolide-resistant
by other methods, pyrosequencing revealed that the resistant
quasispecies comprised 52–100% of the total population. These
results underscore the potential for development of macrolide
resistance during the course of infection in an individual
patient. Longitudinal studies in which multiple specimens
are collected from the same patient throughout the duration
of illness will be necessary to demonstrate the emergence of
macrolide-resistant M. pneumoniae resulting from macrolide
therapy at an individual level. Adoption of methods capable of
identifying quasispecies within a patient specimen, including
pyrosequencing and potentially digital droplet PCR, could help
monitor the emergence of resistance in this organism or to
identify infections that are less likely to be resolved by macrolide
therapy.

Restriction Fragment Length
Polymorphism (RFLP) Analysis
Matsuoka et al. (2004) established RFLP methods for analysis
of point mutations in 23S rRNA in M. pneumoniae. RFLP
has traditionally been used for typing of M. pneumoniae
based on the P1 adhesion molecule as described in section
“Restriction Fragment Length Polymorphism (RFLP) and
Sequencing Analysis” above. Digestion of a 210 bp PCR product
amplified from 23S rRNA with either BceAI or BsaI results in
multiple fragments when either the A2063G or A2064Gmutation
is present compared to a single uncut fragment for amplified
product containing the wildtype genotype (Matsuoka et al., 2004).
While this method is reliable, it is not well-suited for use in
clinical microbiology laboratories.

Melting Curve Analysis
Wolff et al. (2008) described a PCR assay using high-resolution
melt (HRM) analysis to rapidly differentiate macrolide-resistant
and –susceptible isolates. Two versions of the assay were
developed, using a specific primer set with an intercalating dye
or a self-quenched fluorogenic LUX primer. The substitution of
G for A at position 2063 or 2064 causes the amplicon to melt
at a slightly higher temperature, thus the melting profile can
reliably distinguish macrolide-resistant isolates by comparison to
sensitive and resistant controls included in the run. However,
this method does not identify the exact mutation present within
the amplicon. Subsequently, the HRM assay was modified to
include a nested PCR step, allowing for testing of nucleic acid
from primary clinical specimens (Diaz et al., 2015b). Eliminating
the need to obtain an isolate allowed the assay to be performed in
sufficient time to inform patient treatment decisions.

Similarly, Chan et al. (2013) developed a SimpleProbe real-
time PCR assay with melting curve analysis for detection
of SNPs in 23S rRNA of M. pneumoniae. The SimpleProbe
format consists of a single-labeled hybridization probe that emits
higher fluorescence when bound to the specific target sequence
containing the SNP of interest compared to emission in the
unhybridized state. Binding of the probe to the PCR product
that contains the SNP is less stable, causing it to melt at a lower

Frontiers in Microbiology | www.frontiersin.org 10 March 2016 | Volume 7 | Article 232

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Diaz and Winchell Molecular Methods for M. pneumoniae

temperature. This reaction can be performed with relatively rapid
cycling conditions resulting in a turnaround time under 1 h
(Chan et al., 2013), which represents a substantially faster time
to results compared to other methods for macrolide susceptibility
determination.

Recently, Nummi et al. (2015) reported the development of
a multiplex real-time PCR assay for simultaneous detection of
M. pneumoniae, C. pneumoniae, and the two most common
mutations that confer macrolide resistance in M. pneumoniae.
This method utilizes post-PCR dissociation curve analysis
to identify macrolide-resistant 23S rRNA sequences amplified
from clinical specimens. This type of assay, which provides
simultaneous identification ofM. pneumoniae and determination
of macrolide susceptibility in patient specimens, would improve
appropriate antibiotic prescribing for respiratory infections
caused by this pathogen. Implementation of this type of method
at the point-of-care would provide the best opportunity to impact
prescribing and patient management. On a population level,
widespread implementation of methods like this in surveillance
programs would improve monitoring of macrolide resistance
patterns, particularly as these may change rapidly and vary
substantially based on geography.

WHOLE GENOME SEQUENCING (WGS)

The reduced genome makes M. pneumoniae amenable to high
throughput WGS and other “omics” analyses. Vast improvements
in WGS over the past decade have made this a more accessible
approach for identification and characterization of bacteria.

Sequencing platforms have evolved from whole genome shotgun
sequencing (Sanger) to high-throughput sequencing (Roche
454 and Illumina) and finally to single-molecule long-read
sequencing (PacBio SMRT sequencing and Oxford Nanopore
sequencing; Loman and Pallen, 2015). The availability of
benchtop sequencers has expanded WGS capacity in academic,
clinical, and public health laboratories. This expansion in
sequencing capability has resulted in a rapid increase in the
number of bacterial genomes, including M. pneumoniae, made
publicly available in the last several years.

Figure 1 shows a timeline highlighting the major milestones
in M. pneumoniae WGS. The genome of M. genitalium was
one of the first bacterial whole genome sequences obtained in
1995 (Fraser et al., 1995). The M. pneumoniae type 1 reference
strain M129 followed soon after in 1996, making Mycoplasma
the first bacterial genus to have whole genome sequences from
two different species (Himmelreich et al., 1996). The genome of
M129 was subsequently re-annotated in 2000 and found to have
816,394 bp and 730 genes (Dandekar et al., 2000). This served
as the only available reference genome for M. pneumoniae until
the first sequence of a type 2M. pneumoniae strain, the reference
strain FH, was reported 10 years later (Krishnakumar et al., 2010).
This was followed by the report of the whole genome of a type
2a strain (309) in 2012 (Kenri et al., 2012). Demonstrating the
rapid advancement in technical improvements and accessibility
toWGS technology, two studies were published in 2015 reporting
comparative genomic analysis of 15 and 23 M. pneumoniae
strains, respectively (Lluch-Senar et al., 2015; Xiao et al., 2015).
While a discussion of all “-omics” analysis of M. pneumoniae
is outside the scope of this review, in the following sections we

FIGURE 1 | Timeline of milestones in whole genome sequencing of Mycoplasma pneumoniae.
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will discuss recent findings of genomic analyses and how this
technology may impactM. pneumoniae diagnostics in the future.

Comparative Genomics
Xiao et al. (2015) analyzed 15M. pneumoniae genomes obtained
by Illumina sequencing, including 11 clinical isolates and 4
reference strains. They observed over 99% sequence similarity
between all genomes, with the most variation occurring in
specific regions within each of the P1 and ORF6 genes, two
genes encoded in the same operon which encode components of
the adhesin complex. Phylogenetic trees built on whole genome
SNP analysis revealed two major clusters based on P1 type. This
analysis also suggested that the genome of M. pneumoniae is
extremely stable over time and geographic distribution, and no
evidence of horizontal gene transfer was found in the sequenced
isolates (Xiao et al., 2015).

Lluch-Senar et al. (2015) reported a multi-“omics” analysis of
M. pneumoniae, including comparative genomic analysis of 23
M. pneumoniae isolates. Classification of diverse M. pneumoniae
isolates based on SNPs and indels revealed new subclasses within
the broader P1 types 1 and 2 classifications, including four
subtypes within type 1 (1a–1d) and five within type 2 (2a–e). The
authors concluded that some of these subtypes were associated
with country of isolation, but a more comprehensive study
including a higher number of isolates representing additional
geographic origins is necessary to confirm this observation.
Interestingly, this analysis revealed that the frequency of genomic
rearrangements was higher than that of SNPs or indels in
M. pneumoniae. In addition, it was observed that SNPs, indels,
and non-synonymous mutations were enriched within genes
encoding for proteins involved in virulence, including adhesion
molecules. These findings support the purported rearrangement
of adhesion genes present in multiple copies within the
M. pneumoniae genome during infection as a mechanism to
circumvent host immune responses (Citti et al., 2010).

Beyond the vast clinical, epidemiological, and microbiological
interest in M. pneumoniae, it is also commonly used as a model
organism in systems biology. The genome of M. pneumoniae
has been compared to other Mycoplasmas, and the core
genome defined for this genus represents the minimal genetic
requirements for a prokaryotic organism (Liu et al., 2012).
Researchers have even been able to create a viable mycoplasma
cell (M. mycoides) containing a completely synthetic genome
(Gibson et al., 2010). Others have characterized the transcriptome
(Guell et al., 2009; Lluch-Senar et al., 2015), proteome (Ueberle
et al., 2002; Kuhner et al., 2009; Catrien and Herrmann, 2011;
Lluch-Senar et al., 2015), phosphoproteome (Su et al., 2007;
Schmidl et al., 2010), methylome (Lluch-Senar et al., 2013),
and metabolome (Maier et al., 2013) of M. pneumoniae, all of
which add to the vastly increasing field of systems biology. The
incredibly rapid accumulation of “-omics” data prompted the
creation of MyMpn, an open access database for M. pneumoniae
datasets, including complete genome sequences (Wodke et al.,
2015). It is expected that large-scale datasets, includingWGS data
from many isolates, will continue to grow and be mined for data
to investigate M. pneumoniae as a pathogen as well as a model
organism.

Impact of Whole Genome Sequencing on
M. pneumoniae Diagnostics
Whole genome sequencing has the potential to permanently
change the field of M. pneumoniae biology and epidemiology
by allowing improved characterization of strains and better
discriminatory power compared to any previous typing method.
These data can be used to inform development of newer
methods to improve strain discrimination that are accessible
to all laboratories. In 2015 alone, two new methods, MLST
and SNaPshot mini-sequencing assays, were reported in which
whole genome sequence data was used to inform the assay
design (Brown et al., 2015b; Touati et al., 2015). Eventually,
WGS directly from clinical specimens may become the
standard method for determination of etiology of respiratory
infections. While the cost of sequencing a bacterial genome
has dropped dramatically in recent years, sequencing is still
primarily performed on bacterial isolates. Recently, WGS
directly from clinical specimens has been demonstrated for
detection of respiratory viruses (Zoll et al., 2015) and for
Mycobacterium tuberculosis (Brown et al., 2015a). Continued
technical improvements could allow for direct metagenomics
analysis of the entire composition of microbial flora within
a patient specimen, which will be critical for implementation
of deep sequencing as a primary diagnostic method. This will
allow for detailed epidemiological tracking of temporal and
geographical trends in strain circulation and will fundamentally
change how outbreaks of respiratory disease are investigated.

CONCLUSION

Over the past decade, advanced molecular methods for the
detection and characterization of M. pneumoniae have grown
exponentially in regards to both the number and variety
of available methods. More widespread implementation of
these methods globally has revealed new trends, such as the
rapid emergence of macrolide resistance in some parts of the
world and the co-circulation of multiple strain types during a
discrete period, which challenges a long-standing belief about
M. pneumoniae epidemiology. Numerous studies in which novel
methods were utilized have also highlighted the inadequacy
of existing typing strategies, particularly with regards to the
inability to definitively link any particular type with clinical
characteristics or patient outcomes. The improved accessibility
of WGS at the clinical laboratory level and rapidly growing
wealth of bioinformatics tools for sequence analysis from
clinical specimens is likely to result in a paradigm shift toward
WGS analysis for M. pneumoniae diagnostics and in clinical
microbiology overall.
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